f08 — Least-squares and Eigenvalue Problems (LAPACK) f08nuc

NAG C Library Function Document

nag zunmhr (f08nuc)

1 Purpose

nag_zunmhr (f08nuc) multiplies an arbitrary complex matrix C' by the complex unitary matrix ¢) which
was determined by nag zgehrd (f08nsc) when reducing a complex general matrix to Hessenberg form.

2 Specification

void nag_zunmhr (Nag_OrderType order, Nag_SideType side, Nag_TransType trans,
Integer m, Integer n, Integer ilo, Integer ihi, const Complex a[], Integer pda,
const Complex tau[], Complex c[], Integer pdc, NagError *fail)

3 Description

nag_zunmhr (f08nuc) is intended to be used following a call to nag zgehrd (f08nsc), which reduces a
complex general matrix A to upper Hessenberg form H by a unitary similarity transformation:

A =QHQ". nag zgehrd (f08nsc) represents the matrix Q as a product of i,; — i;, clementary reflectors.
Here 4;, and 7, are values determined by nag_zgebal (f08nvc) when balancing the matrix; if the matrix has
not been balanced, i;, = 1 and i;; = n.

This function may be used to form one of the matrix products
QC, Q"C, €Q or CQ",
overwriting the result on C' (which may be any complex rectangular matrix).

A common application of this function is to transform a matrix V' of eigenvectors of H to the matrix QV
of eigenvectors of A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: side — Nag_SideType Input
On entry: indicates how Q or Q" is to be applied to C' as follows:
if side = Nag_LeftSide, Q or Q" is applied to C' from the left;

if side = Nag_RightSide, Q or Q" is applied to C' from the right.
Constraint. side = Nag_LeftSide or Nag_RightSide.

3: trans — Nag TransType Input

On entry: indicates whether Q or Q* is to be applied to C as follows:

[NP3645/7] f08nuc.1

f08nuc NAG C Library Manual

if trans = Nag NoTrans, () is applied to C}
if trans = Nag_ConjTrans, Q" is applied to C.

Constraint. trans = Nag NoTrans or Nag_ConjTrans.

4: m — Integer Input
On entry: m, the number of rows of the matrix C; m is also the order of () if side = Nag_LeftSide.

Constraint: m > 0.

5: n — Integer Input

On entry: n, the number of columns of the matrix C; n is also the order of @ if
side = Nag_RightSide.

Constraint: n > 0.

6: ilo — Integer Input
7: ihi — Integer Input
On entry: these must be the same parameters ilo and ihi, respectively, as supplied to nag zgehrd
(f08nsc).
Constraints:

if side = Nag_LeftSide and m > 0, 1 <ilo < ihi < m;
if side = Nag_LeftSide and m = 0, ilo = 1 and ihi = 0;
if side = Nag_RightSide and n > 0, 1 <ilo < ihi < n;
if side = Nag_RightSide and n = 0, ilo = 1 and ihi = 0.

8: a[dim| — Complex Input/Output

Note: the dimension, dim, of the array a must be at least
max (1, pda x m) when side = Nag_LeftSide;
max(1, pda x n) when side = Nag_RightSide.

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i,7)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

On entry: details of the vectors which define the elementary reflectors, as returned by nag zgehrd
(f08nsc).

On exit: used as internal workspace prior to being restored and hence is unchanged.

9: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.
Constraints:

if side = Nag_LeftSide, pda > max(1, m);
if side = Nag_RightSide, pda > max(1,n).
10: tau[dim]| — const Complex Input

Note: the dimension, dim, of the array tau must be at least max(l,m— 1) when
side = Nag_LeftSide and at least max(1,n — 1) when side = Nag_RightSide.

On entry: further details of the elementary reflectors, as returned by nag zgehrd (f08nsc).

11: c¢[dim] — Complex Input/Output

Note: the dimension, dim, of the array ¢ must be at least max(l,pde x n) when
order = Nag_ColMajor and at least max(1, pdec x m) when order = Nag_RowMajor.

f08nuc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08nuc

12:

6

If order = Nag_ColMajor, the (4, j)th element of the matrix C' is stored in ¢[(j — 1) x pde + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix C' is stored in ¢[(i — 1) x pdc + j — 1].

On entry: the m by n matrix C.
On exit: ¢ is overwritten by QC or Q7 C or CQ or CQ™ as specified by side and trans.

pdc — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.

Constraints:
if order = Nag_ColMajor, pdc > max(1, m);
if order = Nag_RowMajor, pdc > max(1,n).
fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pde = (value).
Constraint: pdc > 0.

NE_INT 2

On entry, pde = (value), m = (value).
Constraint: pde > max(1, m).

On entry, pde = (value), n = (value).
Constraint: pde > max(1,n).

NE_ENUM_INT 3

On entry, side = (value), m = (value), n = (value), pda = (value).
Constraint: if side = Nag_LeftSide, pda > max(1, m);
if side = Nag_RightSide, pda > max(1,n).

NE_ENUM_INT 4

On entry, side = (value), m = (value), n = (value), ilo = (value), ihi = (value).
Constraint: if side = Nag_LeftSide and m > 0, 1 <ilo < ihi < m;

if side = Nag_LeftSide and m = 0, ilo = 1 and ihi = 0;

if side = Nag_RightSide and n > 0, 1 <ilo < ihi < n;

if side = Nag_RightSide and n = 0, ilo = 1 and ihi = 0.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

[NP3645/7] f08nuc.3

f08nuc NAG C Library Manual

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy
The computed result differs from the exact result by a matrix £ such that
1E]l, = O(ICll,,

where € is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately 8ng” if side = Nag_LeftSide and 8m¢
if side = Nag_RightSide, where q = i;; — 1,

The real analogue of this function is nag_dormhr (f08ngc).

9 Example

To compute all the eigenvalues of the matrix A, where

—397-504¢ —4.11+3.70¢ —-034+1.017 1.29 —0.86¢
0.34 —1.50¢ 1.52 —0.43¢ 1.88 —5.38; 3.36 + 0.65¢
331 —-3.85 2.50+3.45¢ 0.88 —1.08; 0.64 —1.48: |’

—1.10 4 0.82¢ 1.81 —1.59¢ 3.2541.33¢ 1.57 —3.44:

A:

and those eigenvectors which correspond to eigenvalues A such that Re(A) < 0. Here A is general and
must first be reduced to upper Hessenberg form H by nag zgehrd (f08nsc). The program then calls
nag_zhseqr (f08psc) to compute the eigenvalues, and nag zhsein (f08pxc) to compute the required
eigenvectors of H by inverse iteration. Finally nag zunmhr (f08nuc) is called to transform the
eigenvectors of H back to eigenvectors of the original matrix A.

9.1 Program Text

/* nag_zunmhr (£08nuc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */
Integer i, j, m, n, pda, pdh, pdvl, pdvr, pdz;
Integer tau_len, ifaill_len, ifailr_len, select_len, w_len;
Integer exit_status=0;
double thresh;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *h=0, *v1=0, *vr=0, *z=0, *w=0, *tau=0;
Integer *ifaill=0, *ifailr=0;
Boolean #*select=0;

#ifdef NAG_COLUMN_MAJOR

08nuc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

#define A(I,J) al(J-1)*pda + I - 1]

#define H(I,J) h[(J-1)*pdh + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + J - 1]

#define H(I,J) h[(I-1)*pdh + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08nuc Example Program Results\n\n")

/* Skip heading in data file */
Vscanf ("s*x["\n] ");
Vscanf ("$1d%s*[*\n] ", &n);
#ifdef NAG_COLUMN_MAJOR
pda = n;
pdh = n;
pdvl = n;
pdvr = n;
pdz = 1;
#else
pda = n;
pdh = n;
pdvl = n;
pdvr = n;
pdz = 1;
#endif
tau_len = n;
w_len = n;
ifaill _len = n;
ifailr_len = n;
select_len = n;

/* Allocate memory */

if (!(a = NAG_ALLOC(n * n, Complex)) |

NAG_ALLOC(n * n, Complex)) |

= NAG_ALLOC(n * n, Complex)) |
) |
) 1

! (h
(v
! (vr = NAG_ALLOC(n * n, Complex
! (z = NAG_ALLOC(1 * 1, Complex)
! (w = NAG_ALLOC(w_len, Complex)) ||
1 (ifaill = NAG_ALLOC(ifaill_len, Integer))
! (ifailr = NAG_ALLOC(ifaill_len, Integer))
! (select = NAG_ALLOC(select_len, Boolean))
! (tau = NAG_ALLOC(tau_len, Complex)))
{
Vprintf ("Allocation failure\n")
exit_status = -1;
goto END;
}
/* Read A from data file x/
for (i = 1; i <= n; ++1)
{
for (jJ = 1; j <= n; ++3)

f08nuc

Vscanf (" (%1f , %1f)", &A(i,j).re, &A(i,J).im);

}
Vscanf ("s*x["\n] ");
Vscanf ("$1f%*[\n] ", &thresh);

/* Reduce A to upper Hessenberg form */
f08nsc(order, n, 1, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)

{

Vprintf ("Error from f08nsc.\n%s\n", fail.message);

exit_status = 1;
goto END;
}

/* Copy A to H x/

for (i = 1; i <= n; ++1i)

{

[NP3645/7]

f08nuc.5

f08nuc NAG C Library Manual

for (j = 1; j <= n; ++3j)

H(i,j).re = A(i,]).re;
H(i,j).im = A(i,3).im;

/* Calculate the eigenvalues of H (same as A) */
fO08psc(order, Nag_EigVals, Nag NotZ, n, 1, n, h, pdh, w,
z, pdz, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08psc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print eigenvalues */
Vprintf (" Eigenvalues\n");
for (i = 0; 1 < n; ++1)
Vprintf (" (%7.4f,%7.4£)", wlil.re, wl[i].im);
Vprintf ("\n") ;
for (i = 0; i < n; ++1i)
select[i] = (w[i].re < thresh);
/* Calculate the eigenvectors of H (as specified by SELECT), */
/* storing the result in VR */
f08pxc(order, Nag_RightSide, Nag_HSEQRSource, Nag _NoVec, select,
n, a, pda, w, vl, pdvl, vr, pdvr, n, &m, ifaill,
ifailr, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08pxc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Calculate the eigenvectors of A = Q * VR */
f08nuc(order, Nag_LeftSide, Nag_NoTrans, n, m, 1, n, a, pda,
tau, vr, pdvr, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08nuc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print Eigenvectors */

Vprintf ("\n") ;

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, m,
vr, pdvr, Nag_BracketForm, "%7.4f",
"Contents of array VR", Nag_IntegerLabels, O,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:
if (a) NAG_FREE (a);
if (h) NAG_FREE (h);
if (vl) NAG_FREE(vl);
if (vr) NAG_FREE(vr);
if (z) NAG_FREE(z);
if (w) NAG_FREE (w) ;
if (ifaill) NAG_FREE (ifaill);
if (ifailr) NAG_FREE(ifailr);
if (select) NAG_FREE(select);

if (tau) NAG_FREE (tau);
return exit_status;

fO08nuc.6 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

9.2 Program Data

f08nuc Example Program Data

9.3 Program Results

) (-4.11, 3.70) (-0.34, 1.01
) (1.52,-0.43) (1.88,-5.38
) (2.50, 3.45) (0.88,-1.08
) (1.81,-1.59) (3.25, 1.33

f08nuc Example Program Results

Eigenvalues

(-6.0004,-6.

Contents of

1 (1.0000
2 (-0.0210,
3 (0.1035,
4 (-0.0664,

1
,—0.0000)
)
)
)

9998) (-5.0000,

array VR

0.3590
0.3683
-0.3436

(
(
(
(

.6485, 0.4683

0]

0
-0.0323,-0.8516

0

2
.2613, 0.5284)
)
)
)

.4521, 0.1368

—~ e~~~

2.0060) (7.9982,-0.9964)

1.29,-0.86)
3.36, 0.65)
0.64,-1.48)
1.57,-3.44)

(

f08nuc

:Value of N

:End of matrix A
:Value of THRESH

3.0023,-3.9998)

[NP3645/7]

f08nuc.7 (last)

	f08nuc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	side
	trans
	m
	n
	ilo
	ihi
	a
	pda
	tau
	c
	pdc
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_3
	NE_ENUM_INT_4
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

